On Greatest Fixpoint Semantics of Logic Programming
نویسنده
چکیده
The study of fixpoints has long been at the heart of logic programming. However, whereas least fixpoint semantics works well for SLD-refutations (i.e. is sound and complete), there is no satisfactory (i.e. complete) fixpoint semantics for infinite derivations. In this paper, we focus on this problem. Standard approaches in this area consist in concentrating on infinite derivations that can be seen as computing, in the limit, some infinite object. This is usually done by extending the domain of computation with infinite elements and then defining the meaning of programs in terms of greatest fixpoints. The main drawback of these approaches is that the semantics defined is not complete. Hence, since defining a greatest fixpoint semantics for logic programs amounts to consider a program as a set of co-inductive definitions, we focus on this identification at a deeper level by considering infinite derivations as proofterms in a co-inductive set. This reading leads into considering derivations as proofs rather than computations and allows one to show that for the subclass of infinite derivations over the domain of finite terms, a complete greatest fixpoint semantics can be obtained. Our main result is that the greatest fixpoint of the one-step-inference operator for the -semantics corresponds to atoms that have a non-failing fair derivation with the additional property that complete information over a variable is obtained after finitely many steps.
منابع مشابه
Grounded Fixpoints
Algebraical fixpoint theory is an invaluable instrument for studying semantics of logics. For example, all major semantics of logic programming, autoepistemic logic, default logic and more recently, abstract argumentation have been shown to be induced by the different types of fixpoints defined in approximation fixpoint theory (AFT). In this paper, we add a new type of fixpoint to AFT: a ground...
متن کاملAn effective fixpoint semantics for linear logic programs
In this paper we investigate the theoretical foundation of a new bottom-up semantics for linear logic programs, and more precisely for the fragment of LinLog (Andreoli, 1992) that consists of the language LO (Andreoli & Pareschi, 1991) enriched with the constant 1. We use constraints to symbolically and finitely represent possibly infinite collections of provable goals. We define a fixpoint sem...
متن کاملMany-valued Logic Programming and Fixpoint Semantics for Higher-order Herbrand Models
In this paper we compare the two versions of knowledge invariant transformations of the original Many-valued logic programs: the strict Annotated logic programs and the ’meta’ logic programs obtained by the ontological encapsulation [1]. We show that the first one has the higher-order Herbrand interpretations, while the last can be seen as the flattening of the first one. These two knowledge in...
متن کاملGeneral Model Theoretic Semantics for Higher-Order Horn Logic Programming
We introduce model-theoretic semantics [6] for Higher-Order Horn logic programming language. One advantage of logic programs over conventional non-logic programs has been that the least fixpoint is equal to the least model, therefore it is associated to logical consequence and has a meaningful declarative interpretation. In simple theory of types [9] on which Higher-Order Horn logic programming...
متن کاملInf-datalog, Modal Logic and Complexities
Inf-Datalog extends the usual least fixpoint semantics of Datalog with greatest fixpoint semantics: we defined inf-Datalog and characterized the expressive power of various fragments of inf-Datalog in [16]. In the present paper, we study the complexity of query evaluation on finite models for (various fragments of) infDatalog. We deduce a unified and elementary proof that global model-checking ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Log. Comput.
دوره 12 شماره
صفحات -
تاریخ انتشار 2002